- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bu, Lake (1)
-
Kinsy, Michel A. (1)
-
Patooghy, Ahmad (1)
-
Soleimani, Kimia (1)
-
Soltani, Nasim (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Reliability of modern multicore and many-core chips is tightly coupled with the reliability of their on-chip networks. Communication channels in current Network-on-Chips (NoCs) are extremely susceptible to crosstalk faults. In this work, we propose a set of rules for generating classes of crosstalk free coding systems to protect communication channels in NoCs against crosstalk faults. Codewords generated through these rules are free of '101' and '010' bit patterns, which are the main sources of crosstalk faults in NoC communication channels. The proposed rules determine: (1) the weights of different bit positions in a coding system to reach crosstalk free codings, and (2) how the coding might be utilized in an NoC to prevent crosstalk generating bit patterns in NoC channels. Using the proposed set of rules, designers can obtain coding systems which are crosstalk free for any widths of communication channels. Compared to conventional Forbidden Pattern Free (FPF) systems, the proposed methodology is able to provide unique representation to any input values at the lower bound of the codeword lengths. Analyses show that the proposed rules, along with the proposed encoding/decoding mechanisms, are effective in preventing forbidden pattern coding systems for network-on-chips of any arbitrary channel width.more » « less
An official website of the United States government
